The air leakage goal set at the project outset was met, and the heating performance very closely followed the predicted performance. However, it is clear that with more attention to detail, a more airtight enclosure could be achieved. Testing showed that the major air leakage areas were around the range hood fan exhaust and at original exterior wall electrical outlets that could not be sealed at the baseboards. Other major air leakage occurred where interior plaster and baseboard were removed but not replaced, specifically behind the new kitchen cabinets. One of the replacement windows was particularly leaky, and plans have been made to replace it.
Better windows would be another place to look for improvement. Triple-glazed windows would have a significant impact. The double patio glass doors used at the back were particularly poor performers, both in terms of air leakage and thermal qualities. And the thermal scan showed that keeping the existing wood front door was probably not a good decision.
A heat recovery ventilator (HRV) installed inline with the return of the second floor air handler would likely have a significant effect on the heating savings as well, so plans for the fan cycling will be coupled with an HRV installation.
The installation of photovoltaic units could offset the electrical loads, and based on actual electrical use, it is clear that a 3.5 kWp system would reduce the electric load to next to nothing. By late April, a 4.9 kWp system will be installed on a south-facing boat shed in the backyard in anticipation of the plug-in cars of the future.
Work that involves new construction technologies cannot be done without the help of experienced and patient contractors.
Finally, this project was informed by the work being done under contract with the Department of Energy's Building America Program, which aims to lead the country to zero-energy homes by the year 2020.