7.5.- Sistema De Posicionamiento Global

Introducción histórica

Cuando la extinta Unión Soviética (U.R.S.S.) puso en órbita el primer satélite artificial de la Tierra, se observaba como un punto brillante, que se desplazaba lentamente entre los astros que servían de referencia para los navegantes. Pronto surgió una idea, pasar de la navegación estelar a la gestionada por satélite. Un grupo de científicos soviéticos, dirigidos por el académico V. Kotélnikov (1908-2005), ofrecieron utilizar el método Doppler para determinar los parámetros de las órbitas de los satélites.

El tres de marzo de 1978, la U.R.S.S. puso en marcha el satélite Cosmos 1000, dando inicio al sistema de navegación cósmica nacional, Tsikada (en EE.UU. se desplegó el denominado TRANSIT), destinado a localizar a los barcos en cualquier lugar del océano. Actualmente hay varios satélites con esta misión. Con este esquema de satélites, se pueden obtener datos, en el ecuador cada 72 minutos y en latitudes altas más a menudo, y en las latitudes norteñas, donde las órbitas se cruzan, ininterrumpidamente. En los barcos se instala un microprocesador, que se conecta al sistema de radionavegación tradicional El uso de este sistema, proporcionaba, hace unos años, el ahorro del orden de unos 25000 rublos al año, por barco, en la extinta U.R.S.S. Posteriormente se implantó el Sistema de Satélite de Navegación Global (SSNG), conocido como GLONASS, para la localización exacta de barcos, automóviles y otros objetivos.

En el año 1986, la U.R.S.S. y EE.UU., declararon a la Organización Marítima Internacional, que se podían explotar estos sistemas con fines pacíficos. De forma que EE.UU. ha desarrollado desde entonces, un sistema análogo al soviético, quedando completo el año 1995. Consta de 24 satélites, de los que tres son de reserva, situados en tres planos orbitales, a 20200 km de altura, con un ángulo de 120 grados, uno respecto al otro. Las señales de navegación se emiten en una banda de 1602.2 a 1615 MHz. Además estos satélites pueden servir a una cantidad ilimitada de usuarios. Actualmente este sistema está gestionado por el Ministerio de Defensa de EE.UU. En estos momentos se está implantando un sistema europeo, Galileo, que será totalmente libre en su uso.

Este es el origen del Sistema de Posicionamiento Global "GPS", en amplio desarrollo actualmente, cuyo predecesor, el SSNG, puede seguir usándose, mediante un módulo adicional.

A muchos navegantes y topógrafos acostumbrados a trabajar con los métodos tradicionales, la obtención de la posición con sólo pulsar un botón, les debe de parecer sorprendente. Existe actualmente una forma más avanzada del GPS, que optimiza aún más los límites de la precisión. Se conoce como GPS diferencial "DGPS", y con él se puede medir fiablemente una posición hasta cuestión de metros, y en cualquier lugar del planeta. Actulamente Europa está desarrollando el sistema europeo Galileo, libre de cualquier interferencia militar.

GPS Básico

Se basa en 24 satélites en órbita a unos 23000 km de distancia. Éstos actúan como puntos de referencia a partir de los cuales "triangulan" su posición unos receptores en la Tierra. En cierto sentido es como una versión en alta tecnología de la vieja técnica, consistente en tomar marcaciones mediante una brújula desde las cumbres de los montes cercanos para situar un punto en el mapa.

GPS
Los satélites actúan como puntos de referencia al ser supervisadas sus órbitas con gran precisión desde estaciones terrestres. Mediante una medición del tiempo de viaje de las señales trasmitidas desde los satélites, un receptor GPS en la tierra determina su distancia desde cada satélite. Con la medición de la distancia desde cuatro satélites y la aplicación de cálculos, el receptor obtiene, latitud, longitud, altitud, derrota y velocidad. Los buenos receptores tienen una precisión menor que 100 m, y efectúan más de una medida por segundo. Los receptores pueden hacerse con antenas muy pequeñas, de tal tamaño, que caben en la mano, de hecho actualmente la mayoría de teléfonos móviles celulares tipo smartphone lo incorporan.

Otra ventaja es que las señales GPS están al alcance de todos, gratuitamente sin necesidad de pagar tasas de licencia ni uso, pues los satélites son de EE.UU, de Rusia y proximamente los europeos, con lo cual no tienen ninguna opción de sacar dinero a costa de este tipo de usuarios (excepto las operadoras de telefoní móvil por el servicio AGPS).

GPS en tres pasos básicos

Paso 1 Los satélites son puntos de referencia. Sus posiciones en el espacio se conocen con mucha precisión, constituyendo la base de todos los cálculos GPS.

Paso 2 El tiempo de viaje de la señal da la distancia (v=x/t). Mediante una serie de mensajes codificados, un receptor en tierra determina el momento en que la marca de tiempo partió del satélite, así como el momento de llegada a la antena. La diferencia es el tiempo de viaje de cada señal. La distancia es el producto del tiempo por la velocidad de la luz. En este proceso es donde hay errores, aunque se considera en los cálculos la teoría de la relatividad de Einstein.

Paso 3 Tres distancias fijan la posición. Se supone un receptor a 23000 km de un satélite. Esta medición restringe el lugar del universo en que puede encontrarse el receptor. Indica que ha de estar en algún lugar de una superficie esférica imaginaria, centrada en ese satélite y con un radio de 23000 km. Si por ejemplo el receptor se encuentra a 26000 km de un segundo satélite, eso restringe aún más el lugar, a la intersección entre dos esferas, que es una circunferencia.

Una tercera medición, añade otra esfera, que interceptal círculo determinado por las otras dos. La intersección ocurre en dos puntos, y así con tres mediciones, el receptor restringe su posición a sólo dos puntos en todo el universo.

Una cuarta medición seleccionaría uno de estos dos puntos, pero no es necesario, pues de los dos puntos del paso anterior, uno está a miles de km de la Tierra, por lo que no tiene sentido. Aunque a veces es realizada esta cuarta medición, para proporcionar una forma de asegurar que el reloj del receptor está sincronizado con la hora universal.
GPS diferencial (DGPS)

Es una forma de hacer más preciso al GPS. El DGPS proporciona mediciones precisas hasta un par de metros en aplicaciones móviles, e incluso mejores en sistemas estacionarios. Esto implica el que sea un sistema universal de medición, capaz de posicionar objetos en una escala muy precisa.

El DGPS opera mediante la cancelación de la mayoría de los errores naturales y causados por el hombre, que se infiltran en las mediciones normales con el GPS. Las imprecisiones provienen de diversas fuentes, como los relojes de los satélites, órbitas imperfectas y, especialmente, del viaje de la señal a través de la atmósfera terrestre. Dado que son variables es difícil predecir cuales actúan en cada momento. Lo que se necesita es una forma de corregir los errores reales conforme se producen. Aquí es donde entra el segundo receptor, se sitúa en un lugar cuya posición se conozca exactamente. Calcula su posición a través de los datos de los satélites y luego compara la respuesta con su posición conocida. La diferencia es el error de la señal GPS.

No es posible calcular el error en un momento y que valga para mediciones sucesivas, ya que los receptores de los satélites cambian continuamente. Para realizar esta tarea es necesario tener dos receptores operando simultáneamente. El de referencia permanece en su estación y supervisa continuamente los errores a fin de que el segundo receptor (el itinerante) pueda aplicar las correcciones a sus mediciones, bien sea en tiempo real o en algún momento futuro.

El concepto ya está funcionando algún tiempo y se ha utilizado ampliamente en la ciencia e industria. Hay una norma internacional para la transmisión y recepción de correcciones, denominada "Protocolo RTCM SC-104".

¿Por qué se necesita el DGPS?

Si el mundo fuera como un laboratorio, el GPS sería mucho más preciso. Dado que el mundo parece una jungla, hay multitud de oportunidades para que resulte perturbado un sistema basado en la radio. A continuación se describen los errores a los que hay que enfrentarse:

Errores de los satélites

Los satélites llevan relojes atómicos muy precisos, pero no perfectos. La posición de los satélites en el espacio es también importante, estos se ubican en órbitas altas, por lo que están relativamente libres de los efectos perturbadores de la capa superior de la atmósfera terrestre, pero aún así se desvían ligeramente de las órbitas predichas.

Atmósfera

La información se transmite por señales de radio y esto constituye otra fuente de error. La física puede llevarnos a creer que las señales de radio viajan a la velocidad de la luz, que es constante, pero eso sólo es en el vacío. Las ondas de radio disminuyen su velocidad en función del medio en que se propagan, así pues, conforme una señal GPS pasa a través de las partículas cargadas de la ionosfera y luego a través del vapor de agua de la troposfera, se retrasa un poco, lo cual implica un valor erróneo de la distancia del satélite.

Error multisenda

Cuando la señal GPS llega a la Tierra se puede reflejar en obstrucciones locales antes de llegar al receptor. La señal llega la antena por múltiples sendas, primero la antena recibe la señal directa y algo más tarde llegan las desplazadas, produciendo ruido. Un ejemplo es en el caso de la TV cuando se ven imágenes múltiples solapadas.

Error del receptor

Los receptores tampoco son perfectos y pueden introducir sus propios errores, que surgen de sus relojes o de ruido interno.

Disponibilidad selectiva

Mucho peor es que hasta hace unos años a las fuentes naturales de error se sumaba el que aportaba intencionadamente el Departamento de Defensa de EE.UU., con la finalidad de asegurarse de que ninguna fuerza hostil utiliza la posición de GPS contra los EE.UU. Se introduce ruido en los relojes de los satélites, lo cual reduce su precisión, aunque también pueden dar datos orbitales erróneos. Los receptores militares disponen de una llave física que desencripta los errores introducidos para así eliminarlos. De esta forma se pueden llegar a precisiones de 15 m.

El DGPS obtiene mejores precisiones que las conseguidas con las codificadas para usos militares y también proporciona una forma de verificar la fiabilidad de las mediciones momento a momento.
Magnitud típica de los errores (en m)
Precisión por satélite GPS
DGPS
Relojes de satélites 1.5 0
Errores de órbitas 2.5 0
Ionosfera 5 0.4
Troposfera 0.5 0.2
Ruido receptor 0 .3
Multisenda 0 .6
Dep. Defensa 30 0

Precisión de posición
GPS
DGPS
Horizontal 50 1.3
Vertical 78 2
3D 93 2.8
¿Cómo funciona el DGPS?

Un receptor GPS puede desplazarse a cualquier sitio y realizar mediciones por sí mismo, empleando como referencia los satélites GPS. Mientras que el DGPS implica otro receptor añadido, es decir uno que se desplaza y otro estacionario.

GPS diferencial



Previamente se han comentado las diversas fuentes de error. A su vez las distancias entre los dos receptores son muy pequeñas comparadas con las distancias a las que se encuentran los satélites, esto quiere decir que recorrerán la atmósfera con retrasos análogos, de forma que una de las estaciones puede dedicarse a medir esos errores y facilitárselo a la otra.

Se ha de ubicar el receptor de referencia en un punto cuya posición se haya determinado con exactitud, al recibir las señales GPS realiza los cálculos en sentido inverso al de un receptor. Emplea su posición para calcular el tiempo y así obtiene el error entre el teórico y el real. Todos los receptores de referencia han de facilitar esta información de errores a todos los receptores itinerantes de su zona con objeto de que corrijan sus mediciones. El receptor de referencia reconoce todos los satélites visibles y calcula los errores instantáneos. Luego codifica esta información en un formato estándar y lo transmite a los receptores itinerantes.

Algunos trabajos no requieren correcciones en tiempo real, en este caso se conoce como GPS posprocesado.

También existe el DGPS invertido, por ejemplo, en una flota de camiones que informan periódicamente de su posición a una estación base. En lugar de enviar a los camiones las correcciones diferenciales, la corrección se realiza en la estación base. Los camiones sólo conocen su posición de una manera aproximada, pero el controlador sabría la posición exacta, hasta el punto de poder ubicar el camión en el carril de la calle en que se encuentra.

Aplicaciones de DGPS

Servicio de guardacostas

El Servicio de Guardacostas de EE.UU. es el responsable de proporcionar todas las ayudas de navegación. El huracán BOB que azotó la costa este de EE.UU. en 1991 destrozó o desplazó un gran número de boyas. La situación era peligrosa, pues los barcos iban a puerto confiados en unas boyas que ya no existían o estaban cambiadas de sitio. El Servicio de Guardacostas equipó uno de sus barcos de mantenimiento de boyas con un receptor DGPS y reposicionaron las boyas de nuevo, en tan solo unos días.

Aviación

Algunos experimentos realizados por la NASA y por la aviación de EE.UU. contribuyeron al aterrizaje de helicópteros y aviones de pasajeros mediante DGPS como único sistema guía, sin las radiobalizas tradicionales.

En la actualidad los sistemas de aterrizaje con poca visibilidad son tan caros que sólo están disponibles en los mayores aeropuertos. El DGPS es tan barato que lo puede instalar cualquier aeropuerto y la mejora de seguridad de vuelo es tremenda. Como referencia se puede citar Canadá, donde el sistema GPS ha sustituido al habitual, conocido como Omega.

Gestión de los recursos naturales

La gestión del uso y protección de los bosques es una gran tarea. Su estudio topográfico es difícil, sin embargo hay que medir constantemente parcelas de árboles, ya sea por asunto de su conservación o por ventas a empresas madereras.

El Servicio Forestal de EE.UU. ha sido uno de los pioneros del DGPS. Hacen medidas con GPS desde helicópteros.

Otras aplicaciones son: topografía de galerías de minas, de superficies de pantanos y de zonas para pesca, control de incendios.

Exploración costera

Las empresas petrolíferas gastan mucho dinero en la exploración del fondo de los océanos en busca de lugares idóneos para perforar. El problema, es que una vez el barco encuentra un lugar de perforación, su tripulación necesita llevar a ese punto los dispositivos de perforación, lo cual no es fácil llegar al mismo sitio, al no haber posibilidad de poner marcas de referencia, y apartarse unos metros significa muchos millones de gasto de más. Para solucionar este problema usan el GPS.

Otra utilidad es para mantener a los barcos en las rutas exactas y para el levantamiento topográfico de los puertos.

Gestión transporte y flotas

Con este sistema el controlador de una flota puede llevar la cuenta de cada vehículo, el resultado es una más estricta adhesión al horario y mejor supervisión.

A las empresas de transporte (un ejemplo, los autobuses urbanos en Murcia), flotas de servicios y servicios de seguridad pública les gusta saber la posición de sus vehículos incluso al extremo de conocer el nombre de la calle. También se usa en los ferrocarriles.

Gestion de rutas en autobuses urbanos. A Coruña


Su empleo en coches ya es habitual, mediante dispositivos con pequeñas pantallas que mediante voz van indicando la ruta óptima. Incluso los teléfonos móviles tipo smartphone lo incorporan.

Agricultura

El GPS está abriendo una nueva era de "agricultura de precisión". Un agricultor puede analizar las condiciones del suelo en cada parcela, y compilar un mapa de las demandas de fertilizante. Este mapa se digitaliza y se registra en ordenador. La máquina que adiciona los productos químicos al terreno, va con un GPS y su posición se correlaciona con los datos previamente digitalizados, añadiendo en cada punto la cantidad exacta de fertilizante. Se beneficia el agricultor con menos gasto y el medio ambiente evitando un exceso de productos químicos.

También se puede aplicar a la fumigación aérea.

Transporte marítimo

En EE.UU. es obligatorio que los barcos petroleros lleven GPS por motivos de seguridad.

Otras aplicaciones costeras son: la verificación de vaciados en barcazas, hasta la determinación de las zonas de pesca legal.

Seguridad pública

Para los servicios de bomberos y policía el tiempo de respuesta es muy importante. Con DGPS se pueden guiar los vehículos con gran precisión. Los planos de rutas centralizadas ofrecen a los controladores un mejor conocimiento de la forma en que están desplegados sus efectivos.

¿Cómo solucionar la limitación de los 100 m de resolución?

Como se ha comentado previamente, el sistema GPS para usos no militares tenía una limitación puesta intencionadamente por el ministerio de defensa de EE.UU., con la finalidad, como ya en normal en ellos de incordiar y no beneficiar a nadie, la limitación a 100 m en la resolución, salvo que se use el DGPS que como se ha visto requiere más medios y por lo tanto es más costoso. Debido a las presiones de diversos sectores, el presidente de EE.UU, Clinton. indicó que en el plazo de 10 años se eliminarían las restricciones militares, pero mientras tanto el error era demasiado grande para algunas aplicaciones, como el control de flotas de autobuses urbanos. Para resolver esta falta de resolución, en EE.UU se propuso un sistema aplicable a los autobuses que consta del siguiente equipamiento en cada autobús, un odómetro o sensor de velocidad del vehículo, y un giróscopo que nos dará el cambio en acimut del vehículo. Estos sensores ha de estar perfectamente calibrados y además ha de conocerse la posición inicial y el acimut. Como todos los sensores están sujetos a error esta no es la solución perfecta. La empresa Andrew Corp., desarrolló un sistema que combina lo mejor del GPS y el sistema de posicionamiento continuo (CPS). El sensor de GPS calibra los sensores para evitar errores acumulados. El factor más importante en la generación de errores es la estabilidad del giróscopo, reducidos al mínimo con el sistema Navigator AUTOGIRO, basado en un giróscopo con fibra óptica, diseñado especialmente para sistemas de navegación. El sistema propuesto por esta empresa está aplicándose en diversas empresas de transporte urbano de EE.UU.